

INDO ASIAN MEDICAL CONSULTANCY

NEET UG SPECIAL CHAPTER WISE TEST

NKC-01

)		
Q. Types	: Easy	Moderate	Difficult	Total
Q. Number	: 20	20	10	50
Max. Marks	: 80	80	40	200

ALL INDIA TEST SERIES

TOPIC-MOLE CONCEPT

Date05 July-24Time50 minutes

INSTRUCTIONS-

- This test is purely based on pattern of NEET(UG)-2025
- Before attempting the question paper ensure that it contains all the pages and no question is missing.
- The important points to note:
 - Each question carries 04 (four) marks and, for each correct answer candidate will get 04 (four) marks.
 - For each incorrect answer, 01 (one) mark will be deducted from the total score.
 - To answer a question, the candidate has to find, for each question, the correct answer/ best option.
 - However, after the process of the challenge of key, if more than one option is found to be correct then all/any one of the multiple correct/best options marked will be given four marks (+4).
 - Unanswered/Unattempted questions will be given no marks. In case, a question is dropped/ ignored, all candidates will be given four marks (+4) irrespective of the fact whether the question has been attempted or not attempted by the candidate.

OUR EXPERT AND RESPECTED TEACHERS

PHYSICS	ISHAN SIR , ANJALI MAM , GUDIYA MAM,NITIN SIR
CHEMISTRY	ASHUTOSH SIR, MAHEK MAM, HIMANSHU SIR
BIOLOGY	KAPIL SIR , NITIN SIR , PRASHANT SIR, MAHEK MAM

ABOUT IAMC

Indo Asian Medical Consultancy provides various services for NEET Students, from mentorship programs, free batches,Test series to admission in one of the most prestigious college associated with IAMC. For more info <u>CLICK HERE</u>

1. Difference in density	s the basis of	gave C, 38.71% and H, 9.67%. The empirical	
(a) Ultrafiltration	(b) Molecular sieving	formula of the compound would be:	
(c) Molecular	d) Gravity Separation	(a) CH ₃ O (c)CHO	
attraction		(b) CH_2O (d) CH_4O	
2. Two samples of lead of	xide were separately	6. 20.0 kg of $N_2(g)$ and 3.0 kg of $H_2(g)$ are	
reduced to metallic lead	by heating in a	mixed to produce $NH_3(g)$. The amount of	
current of hydrogen. The	e weight of lead from	$NH_3(g)$ formed is:	
one oxide was half the w	eight of lead	(a) 17 kg	
obtained from the other	oxide. The data	(b) 34 kg	
illustrates		(c) 20 kg	
(a) law of reciprocal prop	ortions	(d) 3 kg	
(b) law of constant propo	rtions		
(c) law of multiple propor	tions	7. The molar solution of H_2SO_4 is equal to:	
(d) law of equivalent prop	portions	(a) N/2 solution (c) 2N solution	
		(b) N solution (d) 3N solution	
3. Match the columns			
Column-I	Column-II	8. Match the mass of elements given in	
(Law of chemical	(Scientists)	Column I with the number of moles given in	
combinations)		Column II and mark the appropriate choice.	
A)Law of definite	v)Antoine	Choose the correct codes from the options	
Lavoisier	17	given below.	
proportions			
B)I aw of multiple	a)Gay Lussac	Column-I Column-II	
	y Cay Lussac	(A) 28 g of He (p) 2 moles	
Proportions	INDO ASIAN MEDIC	$(B) 40 g \text{ of } Na \qquad (q) 7 \text{ moles}$	
C)Law of conservation	r)Dalton	(D) $27 \text{ g of } A1$ (s) 1.5 mole	
of mass			
D)Law of gaseous	s)Joseph Proust	(a) A-(s), B-(r), C-(q), D-(p)	
Volumes		(b) A-(p), B-(r), C-(q), D-(s)	
		(c) A-(r), B-(q), C-(p), D-(s)	
(a) A-(s), B-(r), C-(p), D-	(q)	(d) A-(q), B-(p), C-(s), D-(r)	
(b) A-(p), B-(r), C-(s), D-	(q)		
(c) A-(r), B-(p), C-(s), D-	(q)	9. With increase of temperature, which of	
(d) A-(q), B-(s), C-(r), D	·(p)	these changes?	
		(a) Molality	
4. In compound A, 1.00g of nitrogen unites		(b) Weight fraction of solute	
with 0.57g of oxygen. In compound B, 2.00g		(c) Molarity (d) Mole fraction	
of nitrogen combines with 2.24g of oxygen. In		(u) Mole fraction	
compound C, 3.00g of n	trogen combines	10 Chaose correct antion based on following	
with 5.11g of oxygen. These results obey the		statements. Here T stands for true statement	
IOHOWING LAW		and F for false statement	
(b) law of multiple proportion		(i) Homogeneous mixture has uniform	
(c) law of reciprocal proportion		composition throughout.	
(d) Dalton's law of partial pressure		(ii) All components of a heterogeneous mixture	
()	1	are observable to naked eyes.	
5. An organic compound	contains carbon.	(iii) All solutions are homogeneous in nature.	
hydrogen and oxvgen. It	s elemental analysis		
		1	

(iv) Air is an example of heterogeneous		(i) A molecule of a compound has atoms of
mixture.		different elements.
(a) TTFF (b) TTFT (c) FFTT (d) TFFF		(ii) A compound cannot be separated into its
		constituent elements by physical methods of
11. Assertion : Volume of	a gas is inversely	separation.
proportional to the number	r of moles of gas.	(iii) A compound retains the physical properties
\mathbf{R} reason \cdot The ratio by volu	me of gaseous	of its constituent elements.
reactants and products is in	n agreement with	(iv) The ratio of atoms of different elements in a
their mole ratio	il agreement with	compound is fixed.
(i) Both A and R are true at	nd R is the correct	*
explanation of A	id it is the concet	16. Assertion (A): The empirical mass of
(ii) A is true but R is false		ethene is half of its molecular mass.
(iii) A is false but R is true		Reason (R): The empirical formula represents
(iv) Both A and R are false		the simplest whole number ratio of various
		atoms present in a compound.
12 Match the columns		(i) Both A and R are true and R is the correct
Column I	Column II	explanation of A.
(Physical quantity)	(Unit)	(ii) A is true but R is false.
(Thysical quantity)	(UIIII)	(iii) A is false but R is true.
A) Molarity	n) mol	(iv) Both A and R are false.
B) Mole fraction	a) Unitless	
C) Mole	r) mol I^{-1}	
D) Molality	s) mol $K\sigma^{-1}$	17. The number of significant figures for the
D) Wolanty	s) moring	three numbers 161 cm, 0.161 cm, 0.0161 cm
(a) $A_{-}(r) = B_{-}(q) = C_{-}(s) = D_{-}(r)$		are
(b) A-(r), B-(p), C-(a), D-(g)		(a) 3,4 and 5 respectively
(c) A-(r), B-(a), C-(p), D-(s)		(b) 3,4 and 4 respectively
(d) A-(a), B-(r), C-(p), D-(s)		(c) 3,3 and 4 respectively
$(0) \prod_{i=1}^{n} (0), D(i), O(p), D(0)$		(d) 3,3 and 3 respectively
13 Assertion · One atomi	r mass unit is	
defined as one twelfth of t	he mass of one	18. The number of protons, neutrons and
carbon - 12 atom.		electrons in 175/71 Lu, respectively, are
Reason : Carbon-12 isotor	e is the most	(a) 104, 71 and 71
abundant isotope of carbo	n and has been	(b) 71, 71 and 104
chosen as standard.		(c) 175, 104 and 71
(i) Both A and R are true at	nd R is the correct	(d) 71, 104 and 71
explanation of A.		
(ii) A is true but R is false.		19. An element, X has the following isotopic
(iii) A is false but R is true.		composition:
(iv) Both A and R are false.		200 X : 90%, 199 X : 8.0%, 202 X : 2.0%
		The weighted average atomic mass of the
14. What is the mass percent of carbon in		naturally occurring element X is closest to
carbon dioxide?		(a) 201 u
(i) 0.034%		(b) 202 u
(ii) 27.27%		(c) 199 u
(iii) 0.2 mol L^{-1}		(d) 200 u
(iv) 2 mol L^{-1}		
() =		
15. Which of the following	g statements about a	
compound is incorrect?	B statements about a	

20. Match the items of Column I, II and III appropriately and choose the correct option from the codes given below.

Column I	Column II	Column III
(Multiple)	(Prefix)	(Symbol)
(A)10 ⁻¹⁵	(p) Kilo	(i) m
(B)10-3	(q) yotta	(ii) f
$(C)10^{3}$	(r) milli	(iii) k
(D)10 ²⁴	(s)femto	(iv) Y

(a) A-(s), (ii); B-(r), (i); C-(p), (iii); D-(q), (iv) (b) A-(p), (ii); B-(q), (iii); C-(r), (i); D-(s), (iv) (c) A-(q),(iv); B-(p), (ii); C-(p),(i);D-(r), (iii) (d) A-(r), (iii); B-(p), (ii); C-(s), (i); D-(q), (iv)

21. Consider the following statements.

(i) Atoms of H, O, N and C have identical properties but different mass.

(ii) Matter is divisible into atoms which are further indivisible.

(iii) The ratio of N: H in NH_3 is 1: 3 and N: O in nitric oxide is 2: 1.

(iv) Dalton's atomic theory support law of conservation of mass.

Which of the following pairs of statements is true according to Dalton's atomic theory?

- (a) (i) and (ii)
- (b) (ii) and (iii)
- (c) (ii) and (iv)
- (d) (i) and (iv)

22. Which one of the following sets of compounds correctly illustrate the law of reciprocal proportions?

(a) P_2O_5 , PH_3 , H_2O (b) P_2O_5 , PH_3 , H_2O (c) N_2O_5 , NH_3 , H_2O (d) N_2O , NH_3 , H_2O

23. Which one of the following is the lightest?

(a) 0.2 mole of hydrogen gas

(b) 6.023×10^{22} molecules of nitrogen

(c) 0.1 g of silver

(d) 0.1 mole of oxygen gas

24. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl?

(a) 0.044
(b) 0.333
(c) 0.011
(d) 0.029

25. 10 mL of 2(M) NaOH solution is added to 200 mL of 0.5 (M) of NaOH solution. What is the final concentration?

(a) 0.57 (M)	(c) 11.4 (M)
(b) 5.7 (M)	(d) 1.14 (M)

26. The maximum number of molecules are present in

(a) 15 L of H_2 gas at STP (b) 5 L of N_2 gas at STP (c) 0.5 g of H_2 gas (d) 10 g of O_2 gas

27. 2.76 g of silver carbonate (at. mass of Ag 108) on being heated strongly yield a residue weighing

(a) 2.16 g (b) 2.48 g (c) 2.32 g TANCY (d) 2.64 g

1Δ°

28. If 500 mL of a 5M solution is diluted to 1500 mL, what will be the molarity of the solution obtained?
(i) 1.5 M
(ii) 1.66 M
(iii) 0.017 M
(iv) 1.59 M

29. The number of atoms present in one mole of an element is equal to Avogadro number. Which of the following element contains the greatest number of atoms?

(i) 4g He (ii) 46g Na (iii) 0.40g Ca (iv) 12g He

30. One mole of any substance contains 6.022 \times 10^23 atoms/molecules. Number of molecules of H₂SO₄ present in 100 mL of 0.02M H₂SO₄ solution is ____.

(i) 12.044×10^{20} molecules
(ii) 6.022×10^{23} molecules
(iii) 1×10^{23} molecules
(iv) 12.044×10^{23} molecules

31. Which of the following statements is correct about the reaction given below: $4Fe(s) + 3O_2(g) \longrightarrow 2Fe_2O_3(g)$

(i) Total mass of iron and oxygen in reactants = total mass of iron and oxygen in product therefore it follows law of conservation of mass.
(ii) Total mass of reactants = total mass of product; therefore, law of multiple proportions is followed.

(iii) Amount of Fe_2O_3 can be increased by taking any one of the reactants (iron or oxygen) in excess.

(iv) Amount of Fe_2O_3 produced will decrease if the amount of any one of the reactants (iron or oxygen) is taken in excess.

32. Which of the following statements indicates that law of multiple proportion is being followed.

(i) Sample of carbon dioxide taken from any source will always have carbon and oxygen in the ratio 1:2.

(ii) Carbon forms two oxides namely CO_2 and CO, where masses of oxygen which combine with fixed mass of carbon are in the simple ratio 2:1.

(iii) When magnesium burns in oxygen, the amount of magnesium taken for the reaction is equal to the amount of magnesium in magnesium oxide formed.

(iv) At constant temperature and pressure 200 mL of hydrogen will combine with 100 mL oxygen to produce 200 mL of water vapour.

33. Match the following:

(A) 88 g of CO ₂	(p) 0.25 mol
(B) 6.022 x 10 ²³	
molecules of H ₂ O	(q) 2 mol
(C) 5.6 litres of O ₂ at S	STP (r) 1 mol
(D) 96 g of O ₂	(s) 3 mol

(a) A-(r), B-(q), C-(s), D-(p)
(b) A-(r), B-(p), C-(q), D-(s)
(c) A-(r), B-(q), C-(p), D-(s)
(d) A-(q), B-(r), C-(p), D-(s)

34. 0.24 g of a volatile gas, upon vaporization, gives 45 mL vapour at NTP. What will be the vapour density of the substance? (Density of $H_2 = 0.089$) (a) 95.93

- (b) 59.93
- (c) 95.39
- (d) 5.993

35. Suppose the elements X and Y combine to form two compounds XY_2 and X_3Y_2 . When 0.1 mole of XY_2 weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are

- (a) 4<mark>0, 30</mark>
- (b) 60, 40
- (c) 20, 30
- (d) 30, 20

36. If Avogadro number NA, is changed from 6.022×10²³ mol[^]-1 to 6.022×10²⁰ mol[^]-1 this would change

(a) the definition of mass in units of grams

(b) the mass of one mole of carbon

(c) the ratio of chemical species to each other in a balanced equation

(d) the ratio of elements to each other in a compound

37. Percentage of Se in peroxidase anhydrase enzyme is 0.5% by weight (at. weight = 78.4), then minimum molecular weight of peroxidase anhydrase enzyme is

peroxidase annydrase enzyme is		
(a) 1.568×10^3	(b) 15.68	
(c) 2.168×10^4	(d) 1.568×10^4	

38. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What will be the percentage purity of magnesium carbonate in the sample? (Atomic weight of Mg=24)

- (a) 75
- (b) 96
- (c) 60

(d) 84	(b) 0.1 N and the solution is acidic
	(c) 0.05 N and the solution is basic
39. 10 g of hydrogen and 64 g of oxygen were	(d) 0.05 N and the solution is acidic
filled in a steel vessel and exploded. Amount	
of water produced in this reaction will be	
(a) 2 moles	44. Arrange the following in the order of
(b) 3 moles	increasing mass (atomic mass: O = 16, Cu =
(c) 4 moles	63, N = 14)
(d) 1 mole	I. one atom of oxygen
	II. one atom of nitrogen
40. In Haber process 30L of dihydrogen and	III. 1 x 10^{-10} mole of oxygen
30L of dinitrogen were taken for reaction	$IV 1 \times 10^{-10}$ mole of conner
which vielded only 50% of the expected	(a) $I < II < III < IV$
nroduct What will be the composition of	(a) $I < II < III < IV$ (b) $I < II < III < IV$
gaseous mixture under the aforesaid condition	(b) I < II < II < IV
in the and?	(d) W < W < W < I
In the end: (a) 20 L ammonia 10 L nitrogen 20 L	(u) IV < II < III < I
(a) 20 L ammonia, 10 L mirogen, 30 L	
(b) 20 L annuaria 25 L nitra and 15 L	45. Give the correct order of initials T or F for
(b) 20 L ammonia, 25 L nitrogen, 15 L	following statements. Use T if statement is
nydrogen	true and F if it is false.
(c) 20 L ammonia, 20 L nitrogen, 20 L	(i) G <mark>ay-L</mark> ussac's law of gaseous volumes is
nyarogen	actually the law of definite proportion by
(d) 10 L ammonia, 25 L nitrogen, 15 L	volume.
hydrogen	(ii) Law of conservation of mass is true for
	physical change, but not for chemical change.
41. An ideal gaseous mixture of ethane (C ₂ H ₆)	(iii) The percentage of oxygen in H ₂ O ₂ is
and ethene (C ₂ H ₄) occupies 28 litre at 1 atm [D]	different from that in H ₂ O. Hence, it violates
and 273 K. The mixture reacts completely	law of definite proportions.
with 128 g O ₂ to produce CO ₂ and H ₂ O. Mole	(iv) Fixed mass of A reacts with two different
fraction at C ₂ H ₆ in the mixture is:	masses of B (say x and y), then the ratio of x/y
(a) 0.6	can be any positive integer.
(b) 0.4	(v) At STP 5 mI of N ₂ and H ₂ have different
(c) 0.5	no of molecules
(d) 0.8	(a) TTTEE
	(a) 11111 (b) $FTTFT$
12 1 male of mixture of CO and CO. requires	(b) TTEFE
42. I more of mixture of CO and CO ₂ requires	
exactly 28 g KOH in solution for complete	(a) 11 111
conversion of all the CO_2 into K_2CO_3 . How	
much amount more of KOH will be required	46. Which of the following is the correct
for conversion into K ₂ CO ₃ . If one mole of	empirical and molecular formulae of a
mixture is completely oxidized to CO ₂	compound, if the molecular mass of a
(a) 112 g	compound is 80 and compound contains 60%
(b) 84 g	of C, 5% of H and 35% of N?
(c) 56 g	(a) C_2H_2N ; $C_4H_4N_2$
(d) 28 g	(b) $C_3H_4N_2$; $C_6H_8N_4$
	(c) $C_2H_4N_2$; $C_4H_8N_4$
43. 100 cm ³ of 0.1 N HCl is mixed with 100	(d) C_2H_2N ; C_2H_2N
cm^3 of 0.2 N NaOH solution. The resulting	

47. Liquid benzene (C₆H₆) burns in oxygen according to the equation $2C_6H_6(1) + 15O_2(g)$

(a) 0.1 N and the solution is basic

solution is

 \rightarrow 12CO₂(g) + 6H₂O(g). How many litres of O₂ at STP are needed to complete the combustion of 39 g of liquid benzene? (Mol. wt. of O₂ = 32, C₆H₆ = 78)

(a) 74L
(b) 11.2L
(c) 22.4L
(d) 84L

48. Which of the following option represents correct limiting reagents in reactions (i), (ii) and (iii) respectively.

(i) $C + O_2 \rightarrow CO_2$ (26g) (20g) (ii) $N_2 + 3H_2 \rightarrow 2NH_3$ (60g) (80g) (iii) $P_4 + 30_2 \rightarrow P_4O_6$ (100g) (200g) (a) C, N_2, O_2 (b) C, N_2, P_4 (c) O_2, H_2, P_4 (d) O_2, N_2, P_4 49. The increasing order of molarity with 25 gm each of NaOH, LiOH, Al(OH)₃, KOH, B(OH)₃ in same volume of water?
(a) Al(OH)₃ < B(OH)₃ < KOH < NaOH < LiOH
(b) LiOH < NaOH < KOH < B(OH)₃ < Al(OH)₃
(c) LiOH < NaOH < B(OH)₃ < KOH < Al(OH)₃
(d) NaOH < LiOH < B(OH)₃ < Al(OH)₃ < KOH

50. What is the mass of precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 50 mL of 5.8% NaCl solution? (Ag = 107.8, N = 14, O = 16, Na = 23, Cl = 35.5) (a) 28 g (b) 3.5 g (c) 7 g (d) 14 g

Answer key will be posted on our telegram channel ANWER KEY

Video solution of the paper will be provided within 2-3 days of uploading, on our youtube channel <u>VIDEO SOLUTION</u>

For guidance/mentorship – CLICK HERE

IF ANY QUERY THEN CONTACT -- <u>@MEDICO_NITIN</u>, <u>@KAPILIAMC</u>

